Interpretability and functional transparency

Tommi Jaakkola

in collaboration with David Alvarez Melis, Guang-He Lee, et al.

uncover causal mechanisms

[Garg et al. 2018]

uncover causal mechanisms

[Garg et al. 2018]

learn to highlight relevance

[Lei et al. 2016; Jin et al. 2017]

uncover causal mechanisms

[Garg et al. 2018]

learn to highlight relevance

[Lei et al. 2016; Jin et al. 2017]

learn functional transparency

$$f(\boxed{ }) = \theta(\boxed{ }) \cdot h(\boxed{ })$$

[Lee et al. 2018; Alvarez et al. 2018]

uncover causal mechanisms

[Garg et al. 2018]

learn to highlight relevance

[Lei et al. 2016; Jin et al. 2017]

summarize by causal relations

[Alvarez et al. 2017]

learn functional transparency

[Lee et al. 2018; Alvarez et al. 2018]

uncover causal mechanisms

[Garg et al. 2018]

summarize by causal relations

[Alvarez et al. 2017]

learn to highlight relevance

this beer pours ridiculously clear with tons of carbonation that forms a rather impressive rocky head that settles slowly into a fairly dense layer of foam. this is a real good lookin beer, unfortunately it gets worse from here ... Selection(x) Prediction(z)

[Lei et al. 2016; Jin et al. 2017]

learn functional transparency

[Lee et al. 2018; Alvarez et al. 2018]

"Interpretability"

- (Human) interpretability
 - features (that make sense)
 - relevance (what information is used to make a decision)
 - reasoning (mechanism used to arrive at the decision)

"Interpretability"

- (Human) interpretability
 - features (that make sense)
 - relevance (what information is used to make a decision)
 - reasoning (mechanism used to arrive at the decision)

- Functional transparency
 - guaranteed properties, including robustness

Molding for transparency

deep locally linear models

ReLU networks with large linear regions

 temporal models with desired local behavior

A self-explaining architecture from a deep linear model

A self-explaining architecture from a deep linear model

Arbitrarily powerful, but not (linearly) interpretable

A self-explaining architecture from a deep linear model

Arbitrarily powerful, but not (linearly) interpretable

A self-explaining architecture from a deep linear model

We can regularize the model for local interpretability

$$R(\theta) = \|\nabla f(x) - \theta(x)^T J_{h;x}\|^2$$

A self-explaining architecture from a deep linear model

We can regularize the model for local interpretability

$$R(\theta) = \|\nabla f(x) - \theta(x)^T J_{h,x}\|^2$$
 locally linear "witness"

(Alvarez et al. 2018)

A self-explaining architecture from a deep linear model

We can regularize the model for local interpretability

$$R(\theta) = \|\nabla f(x) - \theta(x)^T J_{h;x}\|^2$$

Generalizable beyond linear (monotone, separable)

A self-explaining architecture from a deep linear model

• E.g., a ReLU network (locally linear)

• E.g., a ReLU network (locally linear)

"activation pattern"

• E.g., a ReLU network (locally linear)

"activation pattern"

• E.g., a ReLU network (locally linear)

"activation pattern"

E.g., a ReLU network (locally linear)

- "activation pattern"
- we can learn the network so as to encourage large linear regions (gradient stability)

We can aim to maximize the margin for each neuron

effective linear weights $\nabla_x z_i$

We can aim to maximize the margin for each neuron

effective linear weights $\nabla_x z_i$

margin
$$\frac{|z_i|}{\|\nabla_x z_i\|}$$

We can aim to maximize the margin for each neuron

 \mathcal{X}

effective linear weights $\nabla_x z_i$

margin
$$\frac{|z_i|}{\|\nabla_x z_i\|}$$

relaxed margin regularizer

$$\|\nabla_x z_i\|^2 + C \max(0, 1 - |z_i|)$$

We maximize a relaxed margin loss

$$\min_{\boldsymbol{\theta}} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}} \mathcal{L}(f_{\theta}(\mathbf{x}), \mathbf{y}) + \frac{\lambda}{|\hat{\mathcal{I}}(\mathbf{x}, \gamma)|} \sum_{(i, j) \in \hat{\mathcal{I}}(\mathbf{x}, \gamma)} \left[\|\nabla_{\mathbf{x}} \mathbf{z}_{j}^{i}\|_{2}^{2} + C \max(0, 1 - |\mathbf{z}_{j}^{i}|) \right]$$

A toy example

[Lee et al. 2018]

Molding temporal models

- Introducing a local "explainer" as a witness of desired local behavior
- For example:

deep temporal models that are locally ARMA (witness: ARMA)

local witness

$$g(t) = \hat{a}_1 g(t-1) + \hat{a}_2 g(t-2) + \epsilon$$

Molding temporal models

- Introducing a local "explainer" as a witness of desired local behavior
- For example:

deep temporal models that are locally ARMA (witness: ARMA)

deep sequence models that are locally bigram (witness: bigram)

We focus in this paper on molding complex predictors towards exhibiting a chosen local functional behavior. We coin the problevaluated functional transparency. The proposed approach is setup as a co-operative game between an unrestricted predictor such as a mental network, and a witness chosen from the desired transparent family. The goal of the witness is to highlight, locally, how well the predictor conforms to the chosen family

local witness

$$g(t) = \hat{a}_1 g(t-1) + \hat{a}_2 g(t-2) + \epsilon_t$$

local witness

$$\hat{P}(w_t|w_{t-1})$$

A co-operative witness...

 We can mold a complex function to agree locally with the corresponding local witness

$$\hat{f} \leftarrow \arg\min_{i=1}^n \underbrace{\sum_{i=1}^n \left[\mathcal{L}(f(x_i), y_i) + \lambda d(f(x_i), \hat{g}(x_i)) \right]}_{\text{loss on observations}}$$
 discrepancy with the local witness

$$\hat{g} \leftarrow \arg\min_{g} \sum_{x_j \in B(x_i)} d(\hat{f}(x_j), g(x_j))$$
 witness at x_i locally tailored witness

(an asymmetric game, information sets do not agree)

[Lee et al. 2018]

Interpretability - the broader view

 The overall goal is about two-way communication, more formal view of "interpretability"

Interpretability - the broader view

 The overall goal is about two-way communication, more formal view of "interpretability"

- Self-explaining models: models are trained to exhibit desirable properties (causal, functional, relevance, etc)
- Multi-resolution explanations