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“Interpretability”

» (Human) interpretability
- features (that make sense)
- relevance (what information is used to make a decision)
- reasoning (mechanism used to arrive at the decision)

- etc.

» Functional transparency
- guaranteed properties, including robustness




Molding for transparency

» deep locally linear » ReLU networks with » temporal models
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Hh Deep locally linear models

» A self-explaining architecture from a deep linear model

(=) = (=) -(|=))
A deep linear deep linear simple teature
model coefficients transformation

» We can regularize the model for local interpretability

R(0) = [V f(z) = 0(2)" Jnie 7

» Generalizable beyond linear (monotone, separable)

(Alvarez et al. 2018)
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Expanding linear regions

» E.Q.
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Expanding linear regions
» E.g., @ ReLU network (locally linear)
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Expanding linear regions

» E.g., @a ReLU network (locally linear)
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Expanding linear regions

» We can aim to maximize the margin for each neuron
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Expanding linear regions

» We can aim to maximize the margin for each neuron

"y
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= effective linear weights V3 z2;
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relaxed margin regularizer

IV2zi]|* + Cmax(0,1 — |2])

.
“““
.
s



Expanding linear regions

» We maximize a relaxed margin loss

. A i i
min Z L(fo(x),y) + —= IVxz! |3 + C max (0,1 — |z}])
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Molding temporal models

» Introducing a local “explainer” as a witness of desired

local behavior
» For example:

deep temporal models

that are locally ARMA
(witness: ARMA)

f ()1

. .estimated

valuated

local withess

gt)=a19(t—1)+a29(t —2) + ¢

deep sequence models
that are locally bigram
(withess: bigram)
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A co-operative witnhess...

» We can mold a complex function to agree locally with the

corresponding local witness
n[ e e e -
f ¢+ argmin Z L(f(%), yz) )\d(f(l"z)a g(xi));
l0oss on obéfervations disore“bancy with

the local withess

g argmin » - d(f(z;),9(x;))

witness T ijEB(z)"

at x;

locally tailored witness

» (an asymmetric game, information sets do not agree)

[Lee et al. 2018]
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Interpretability - the broader view

» The overall goal is about two-way communication, more
formal view of “interpretability”

Explain

» Self-explaining models: models are trained to exhibit
desirable properties (causal, functional, relevance, etc)

» Multi-resolution explanations



